Friday, 17 July 2020

Split List into Sublists with LINQ

Is there any way I can separate a List<SomeObject> into several separate lists of SomeObject, using the item index as the delimiter of each split?

Let me exemplify:

I have a List<SomeObject> and I need a List<List<SomeObject>> or List<SomeObject>[], so that each of these resulting lists will contain a group of 3 items of the original list (sequentially).

eg.:

  • Original List: [a, g, e, w, p, s, q, f, x, y, i, m, c]

  • Resulting lists: [a, g, e], [w, p, s], [q, f, x], [y, i, m], [c]

I'd also need the resulting lists size to be a parameter of this function.


Answers:


If the list is of type system.collections.generic you can use the 'CopyTo' method available to copy elements of your array to other sub arrays. You specify the start element and number of elements to copy.

You could also make 3 clones of your original list and use the 'RemoveRange' on each list to shrink the list to the size you want.

Or just create a helper method to do it for you.


Answers:


You could use a number of queries that use Take and Skip, but that would add too many iterations on the original list, I believe.

Rather, I think you should create an iterator of your own, like so:

public static IEnumerable<IEnumerable<T>> GetEnumerableOfEnumerables<T>(
  IEnumerable<T> enumerable, int groupSize)
{
   // The list to return.
   List<T> list = new List<T>(groupSize);

   // Cycle through all of the items.
   foreach (T item in enumerable)
   {
     // Add the item.
     list.Add(item);

     // If the list has the number of elements, return that.
     if (list.Count == groupSize)
     {
       // Return the list.
       yield return list;

       // Set the list to a new list.
       list = new List<T>(groupSize);
     }
   }

   // Return the remainder if there is any,
   if (list.Count != 0)
   {
     // Return the list.
     yield return list;
   }
}

You can then call this and it is LINQ enabled so you can perform other operations on the resulting sequences.


In light of Sam's answer, I felt there was an easier way to do this without:

  • Iterating through the list again (which I didn't do originally)
  • Materializing the items in groups before releasing the chunk (for large chunks of items, there would be memory issues)
  • All of the code that Sam posted

That said, here's another pass, which I've codified in an extension method to IEnumerable<T> called Chunk:

public static IEnumerable<IEnumerable<T>> Chunk<T>(this IEnumerable<T> source, 
    int chunkSize)
{
    // Validate parameters.
    if (source == null) throw new ArgumentNullException(nameof(source));
    if (chunkSize <= 0) throw new ArgumentOutOfRangeException(nameof(chunkSize),
        "The chunkSize parameter must be a positive value.");

    // Call the internal implementation.
    return source.ChunkInternal(chunkSize);
}

Nothing surprising up there, just basic error checking.

Moving on to ChunkInternal:

private static IEnumerable<IEnumerable<T>> ChunkInternal<T>(
    this IEnumerable<T> source, int chunkSize)
{
    // Validate parameters.
    Debug.Assert(source != null);
    Debug.Assert(chunkSize > 0);

    // Get the enumerator.  Dispose of when done.
    using (IEnumerator<T> enumerator = source.GetEnumerator())
    do
    {
        // Move to the next element.  If there's nothing left
        // then get out.
        if (!enumerator.MoveNext()) yield break;

        // Return the chunked sequence.
        yield return ChunkSequence(enumerator, chunkSize);
    } while (true);
}

Basically, it gets the IEnumerator<T> and manually iterates through each item. It checks to see if there any items currently to be enumerated. After each chunk is enumerated through, if there aren't any items left, it breaks out.

Once it detects there are items in the sequence, it delegates the responsibility for the inner IEnumerable<T> implementation to ChunkSequence:

private static IEnumerable<T> ChunkSequence<T>(IEnumerator<T> enumerator, 
    int chunkSize)
{
    // Validate parameters.
    Debug.Assert(enumerator != null);
    Debug.Assert(chunkSize > 0);

    // The count.
    int count = 0;

    // There is at least one item.  Yield and then continue.
    do
    {
        // Yield the item.
        yield return enumerator.Current;
    } while (++count < chunkSize && enumerator.MoveNext());
}

Since MoveNext was already called on the IEnumerator<T> passed to ChunkSequence, it yields the item returned by Current and then increments the count, making sure never to return more than chunkSize items and moving to the next item in the sequence after every iteration (but short-circuited if the number of items yielded exceeds the chunk size).

If there are no items left, then the InternalChunk method will make another pass in the outer loop, but when MoveNext is called a second time, it will still return false, as per the documentation (emphasis mine):

If MoveNext passes the end of the collection, the enumerator is positioned after the last element in the collection and MoveNext returns false. When the enumerator is at this position, subsequent calls to MoveNext also return false until Reset is called.

At this point, the loop will break, and the sequence of sequences will terminate.

This is a simple test:

static void Main()
{
    string s = "agewpsqfxyimc";

    int count = 0;

    // Group by three.
    foreach (IEnumerable<char> g in s.Chunk(3))
    {
        // Print out the group.
        Console.Write("Group: {0} - ", ++count);

        // Print the items.
        foreach (char c in g)
        {
            // Print the item.
            Console.Write(c + ", ");
        }

        // Finish the line.
        Console.WriteLine();
    }
}

Output:

Group: 1 - a, g, e,
Group: 2 - w, p, s,
Group: 3 - q, f, x,
Group: 4 - y, i, m,
Group: 5 - c,

An important note, this will not work if you don't drain the entire child sequence or break at any point in the parent sequence. This is an important caveat, but if your use case is that you will consume every element of the sequence of sequences, then this will work for you.

Additionally, it will do strange things if you play with the order, just as Sam's did at one point.


Answers:


Try the following code.

public static IList<IList<T>> Split<T>(IList<T> source)
{
    return  source
        .Select((x, i) => new { Index = i, Value = x })
        .GroupBy(x => x.Index / 3)
        .Select(x => x.Select(v => v.Value).ToList())
        .ToList();
}

The idea is to first group the elements by indexes. Dividing by three has the effect of grouping them into groups of 3. Then convert each group to a list and the IEnumerable of List to a List of Lists


Answers:


Here's a list splitting routine I wrote a couple months ago:

public static List<List<T>> Chunk<T>(
    List<T> theList,
    int chunkSize
)
{
    List<List<T>> result = theList
        .Select((x, i) => new {
            data = x,
            indexgroup = i / chunkSize
        })
        .GroupBy(x => x.indexgroup, x => x.data)
        .Select(g => new List<T>(g))
        .ToList();

    return result;
}

Answers:


We found David B's solution worked the best. But we adapted it to a more general solution:

list.GroupBy(item => item.SomeProperty) 
   .Select(group => new List<T>(group)) 
   .ToArray();

Answers:


This question is a bit old, but I just wrote this, and I think it's a little more elegant than the other proposed solutions:

/// <summary>
/// Break a list of items into chunks of a specific size
/// </summary>
public static IEnumerable<IEnumerable<T>> Chunk<T>(this IEnumerable<T> source, int chunksize)
{
    while (source.Any())
    {
        yield return source.Take(chunksize);
        source = source.Skip(chunksize);
    }
}

Answers:


In general the approach suggested by CaseyB works fine, in fact if you are passing in a List<T> it is hard to fault it, perhaps I would change it to:

public static IEnumerable<IEnumerable<T>> ChunkTrivialBetter<T>(this IEnumerable<T> source, int chunksize)
{
   var pos = 0; 
   while (source.Skip(pos).Any())
   {
      yield return source.Skip(pos).Take(chunksize);
      pos += chunksize;
   }
}

Which will avoid massive call chains. Nonetheless, this approach has a general flaw. It materializes two enumerations per chunk, to highlight the issue try running:

foreach (var item in Enumerable.Range(1, int.MaxValue).Chunk(8).Skip(100000).First())
{
   Console.WriteLine(item);
}
// wait forever 

To overcome this we can try Cameron's approach, which passes the above test in flying colors as it only walks the enumeration once.

Trouble is that it has a different flaw, it materializes every item in each chunk, the trouble with that approach is that you run high on memory.

To illustrate that try running:

foreach (var item in Enumerable.Range(1, int.MaxValue)
               .Select(x => x + new string('x', 100000))
               .Clump(10000).Skip(100).First())
{
   Console.Write('.');
}
// OutOfMemoryException

Finally, any implementation should be able to handle out of order iteration of chunks, for example:

Enumerable.Range(1,3).Chunk(2).Reverse().ToArray()
// should return [3],[1,2]

Many highly optimal solutions like my first revision of this answer failed there. The same issue can be seen in casperOne's optimized answer.

To address all these issues you can use the following:

namespace ChunkedEnumerator
{
    public static class Extensions 
    {
        class ChunkedEnumerable<T> : IEnumerable<T>
        {
            class ChildEnumerator : IEnumerator<T>
            {
                ChunkedEnumerable<T> parent;
                int position;
                bool done = false;
                T current;


                public ChildEnumerator(ChunkedEnumerable<T> parent)
                {
                    this.parent = parent;
                    position = -1;
                    parent.wrapper.AddRef();
                }

                public T Current
                {
                    get
                    {
                        if (position == -1 || done)
                        {
                            throw new InvalidOperationException();
                        }
                        return current;

                    }
                }

                public void Dispose()
                {
                    if (!done)
                    {
                        done = true;
                        parent.wrapper.RemoveRef();
                    }
                }

                object System.Collections.IEnumerator.Current
                {
                    get { return Current; }
                }

                public bool MoveNext()
                {
                    position++;

                    if (position + 1 > parent.chunkSize)
                    {
                        done = true;
                    }

                    if (!done)
                    {
                        done = !parent.wrapper.Get(position + parent.start, out current);
                    }

                    return !done;

                }

                public void Reset()
                {
                    // per http://msdn.microsoft.com/en-us/library/system.collections.ienumerator.reset.aspx
                    throw new NotSupportedException();
                }
            }

            EnumeratorWrapper<T> wrapper;
            int chunkSize;
            int start;

            public ChunkedEnumerable(EnumeratorWrapper<T> wrapper, int chunkSize, int start)
            {
                this.wrapper = wrapper;
                this.chunkSize = chunkSize;
                this.start = start;
            }

            public IEnumerator<T> GetEnumerator()
            {
                return new ChildEnumerator(this);
            }

            System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
            {
                return GetEnumerator();
            }

        }

        class EnumeratorWrapper<T>
        {
            public EnumeratorWrapper (IEnumerable<T> source)
            {
                SourceEumerable = source;
            }
            IEnumerable<T> SourceEumerable {get; set;}

            Enumeration currentEnumeration;

            class Enumeration
            {
                public IEnumerator<T> Source { get; set; }
                public int Position { get; set; }
                public bool AtEnd { get; set; }
            }

            public bool Get(int pos, out T item) 
            {

                if (currentEnumeration != null && currentEnumeration.Position > pos)
                {
                    currentEnumeration.Source.Dispose();
                    currentEnumeration = null;
                }

                if (currentEnumeration == null)
                {
                    currentEnumeration = new Enumeration { Position = -1, Source = SourceEumerable.GetEnumerator(), AtEnd = false };
                }

                item = default(T);
                if (currentEnumeration.AtEnd)
                {
                    return false;
                }

                while(currentEnumeration.Position < pos) 
                {
                    currentEnumeration.AtEnd = !currentEnumeration.Source.MoveNext();
                    currentEnumeration.Position++;

                    if (currentEnumeration.AtEnd) 
                    {
                        return false;
                    }

                }

                item = currentEnumeration.Source.Current;

                return true;
            }

            int refs = 0;

            // needed for dispose semantics 
            public void AddRef()
            {
                refs++;
            }

            public void RemoveRef()
            {
                refs--;
                if (refs == 0 && currentEnumeration != null)
                {
                    var copy = currentEnumeration;
                    currentEnumeration = null;
                    copy.Source.Dispose();
                }
            }
        }

        public static IEnumerable<IEnumerable<T>> Chunk<T>(this IEnumerable<T> source, int chunksize)
        {
            if (chunksize < 1) throw new InvalidOperationException();

            var wrapper =  new EnumeratorWrapper<T>(source);

            int currentPos = 0;
            T ignore;
            try
            {
                wrapper.AddRef();
                while (wrapper.Get(currentPos, out ignore))
                {
                    yield return new ChunkedEnumerable<T>(wrapper, chunksize, currentPos);
                    currentPos += chunksize;
                }
            }
            finally
            {
                wrapper.RemoveRef();
            }
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            int i = 10;
            foreach (var group in Enumerable.Range(1, int.MaxValue).Skip(10000000).Chunk(3))
            {
                foreach (var n in group)
                {
                    Console.Write(n);
                    Console.Write(' ');
                }
                Console.WriteLine();
                if (i-- == 0) break;
            }


            var stuffs = Enumerable.Range(1, 10).Chunk(2).ToArray();

            foreach (var idx in new [] {3,2,1})
            {
                Console.Write('idx ' + idx + ' ');
                foreach (var n in stuffs[idx])
                {
                    Console.Write(n);
                    Console.Write(' ');
                }
                Console.WriteLine();
            }

            /*

10000001 10000002 10000003
10000004 10000005 10000006
10000007 10000008 10000009
10000010 10000011 10000012
10000013 10000014 10000015
10000016 10000017 10000018
10000019 10000020 10000021
10000022 10000023 10000024
10000025 10000026 10000027
10000028 10000029 10000030
10000031 10000032 10000033
idx 3 7 8
idx 2 5 6
idx 1 3 4
             */

            Console.ReadKey();


        }

    }
}

There is also a round of optimisations you could introduce for out-of-order iteration of chunks, which is out of scope here.

As to which method you should choose? It totally depends on the problem you are trying to solve. If you are not concerned with the first flaw the simple answer is incredibly appealing.

Note as with most methods, this is not safe for multi threading, stuff can get weird if you wish to make it thread safe you would need to amend EnumeratorWrapper.


Answers:


System.Interactive provides Buffer() for this purpose. Some quick testing shows performance is similar to Sam's solution.


Answers:


I wrote a Clump extension method several years ago. Works great, and is the fastest implementation here. :P

/// <summary>
/// Clumps items into same size lots.
/// </summary>
/// <typeparam name='T'></typeparam>
/// <param name='source'>The source list of items.</param>
/// <param name='size'>The maximum size of the clumps to make.</param>
/// <returns>A list of list of items, where each list of items is no bigger than the size given.</returns>
public static IEnumerable<IEnumerable<T>> Clump<T>(this IEnumerable<T> source, int size)
{
    if (source == null)
        throw new ArgumentNullException('source');
    if (size < 1)
        throw new ArgumentOutOfRangeException('size', 'size must be greater than 0');

    return ClumpIterator<T>(source, size);
}

private static IEnumerable<IEnumerable<T>> ClumpIterator<T>(IEnumerable<T> source, int size)
{
    Debug.Assert(source != null, 'source is null.');

    T[] items = new T[size];
    int count = 0;
    foreach (var item in source)
    {
        items[count] = item;
        count++;

        if (count == size)
        {
            yield return items;
            items = new T[size];
            count = 0;
        }
    }
    if (count > 0)
    {
        if (count == size)
            yield return items;
        else
        {
            T[] tempItems = new T[count];
            Array.Copy(items, tempItems, count);
            yield return tempItems;
        }
    }
}

Answers:


We can improve @JaredPar's solution to do true lazy evaluation. We use a GroupAdjacentBy method that yields groups of consecutive elements with the same key:

sequence
.Select((x, i) => new { Value = x, Index = i })
.GroupAdjacentBy(x=>x.Index/3)
.Select(g=>g.Select(x=>x.Value))

Because the groups are yielded one-by-one, this solution works efficiently with long or infinite sequences.


Answers:


Using modular partitioning:

public IEnumerable<IEnumerable<string>> Split(IEnumerable<string> input, int chunkSize)
{
    var chunks = (int)Math.Ceiling((double)input.Count() / (double)chunkSize);
    return Enumerable.Range(0, chunks).Select(id => input.Where(s => s.GetHashCode() % chunks == id));
}

Answers:


What about this one?

var input = new List<string> { 'a', 'g', 'e', 'w', 'p', 's', 'q', 'f', 'x', 'y', 'i', 'm', 'c' };
var k = 3

var res = Enumerable.Range(0, (input.Count - 1) / k + 1)
                    .Select(i => input.GetRange(i * k, Math.Min(k, input.Count - i * k)))
                    .ToList();

As far as I know, GetRange() is linear in terms of number of items taken. So this should perform well.


Answers:


Ok, here's my take on it:

  • completely lazy: works on infinite enumerables
  • no intermediate copying/buffering
  • O(n) execution time
  • works also when inner sequences are only partially consumed

public static IEnumerable<IEnumerable<T>> Chunks<T>(this IEnumerable<T> enumerable,
                                                    int chunkSize)
{
    if (chunkSize < 1) throw new ArgumentException('chunkSize must be positive');

    using (var e = enumerable.GetEnumerator())
    while (e.MoveNext())
    {
        var remaining = chunkSize;    // elements remaining in the current chunk
        var innerMoveNext = new Func<bool>(() => --remaining > 0 && e.MoveNext());

        yield return e.GetChunk(innerMoveNext);
        while (innerMoveNext()) {/* discard elements skipped by inner iterator */}
    }
}

private static IEnumerable<T> GetChunk<T>(this IEnumerator<T> e,
                                          Func<bool> innerMoveNext)
{
    do yield return e.Current;
    while (innerMoveNext());
}

Example Usage

var src = new [] {1, 2, 3, 4, 5, 6}; 

var c3 = src.Chunks(3);      // {{1, 2, 3}, {4, 5, 6}}; 
var c4 = src.Chunks(4);      // {{1, 2, 3, 4}, {5, 6}}; 

var sum   = c3.Select(c => c.Sum());    // {6, 15}
var count = c3.Count();                 // 2
var take2 = c3.Select(c => c.Take(2));  // {{1, 2}, {4, 5}}

Explanations

The code works by nesting two yield based iterators.

The outer iterator must keep track of how many elements have been effectively consumed by the inner (chunk) iterator. This is done by closing over remaining with innerMoveNext(). Unconsumed elements of a chunk are discarded before the next chunk is yielded by the outer iterator. This is necessary because otherwise you get inconsistent results, when the inner enumerables are not (completely) consumed (e.g. c3.Count() would return 6).

Note: The answer has been updated to address the shortcomings pointed out by @aolszowka.


Answers:


This is an old question but this is what I ended up with; it enumerates the enumerable only once, but does create lists for each of the partitions. It doesn't suffer from unexpected behavior when ToArray() is called as some of the implementations do:

    public static IEnumerable<IEnumerable<T>> Partition<T>(IEnumerable<T> source, int chunkSize)
    {
        if (source == null)
        {
            throw new ArgumentNullException('source');
        }

        if (chunkSize < 1)
        {
            throw new ArgumentException('Invalid chunkSize: ' + chunkSize);
        }

        using (IEnumerator<T> sourceEnumerator = source.GetEnumerator())
        {
            IList<T> currentChunk = new List<T>();
            while (sourceEnumerator.MoveNext())
            {
                currentChunk.Add(sourceEnumerator.Current);
                if (currentChunk.Count == chunkSize)
                {
                    yield return currentChunk;
                    currentChunk = new List<T>();
                }
            }

            if (currentChunk.Any())
            {
                yield return currentChunk;
            }
        }
    }

Answers:


I think the following suggestion would be the fastest. I am sacrificing the lazyness of the source Enumerable for the ability to use Array.Copy and knowing ahead of the time the length of each of my sublists.

public static IEnumerable<T[]> Chunk<T>(this IEnumerable<T> items, int size)
{
    T[] array = items as T[] ?? items.ToArray();
    for (int i = 0; i < array.Length; i+=size)
    {
        T[] chunk = new T[Math.Min(size, array.Length - i)];
        Array.Copy(array, i, chunk, 0, chunk.Length);
        yield return chunk;
    }
}

Answers:


This following solution is the most compact I could come up with that is O(n).

public static IEnumerable<T[]> Chunk<T>(IEnumerable<T> source, int chunksize)
{
    var list = source as IList<T> ?? source.ToList();
    for (int start = 0; start < list.Count; start += chunksize)
    {
        T[] chunk = new T[Math.Min(chunksize, list.Count - start)];
        for (int i = 0; i < chunk.Length; i++)
            chunk[i] = list[start + i];

        yield return chunk;
    }
}

Answers:


To insert my two cents...

By using the list type for the source to be chunked, I found another very compact solution:

public static IEnumerable<IEnumerable<TSource>> Chunk<TSource>(this IEnumerable<TSource> source, int chunkSize)
{
    // copy the source into a list
    var chunkList = source.ToList();

    // return chunks of 'chunkSize' items
    while (chunkList.Count > chunkSize)
    {
        yield return chunkList.GetRange(0, chunkSize);
        chunkList.RemoveRange(0, chunkSize);
    }

    // return the rest
    yield return chunkList;
}

Answers:


completely lazy, no counting or copying:

public static class EnumerableExtensions
{

  public static IEnumerable<IEnumerable<T>> Split<T>(this IEnumerable<T> source, int len)
  {
     if (len == 0)
        throw new ArgumentNullException();

     var enumer = source.GetEnumerator();
     while (enumer.MoveNext())
     {
        yield return Take(enumer.Current, enumer, len);
     }
  }

  private static IEnumerable<T> Take<T>(T head, IEnumerator<T> tail, int len)
  {
     while (true)
     {
        yield return head;
        if (--len == 0)
           break;
        if (tail.MoveNext())
           head = tail.Current;
        else
           break;
     }
  }
}

Answers:


Old code, but this is what I've been using:

    public static IEnumerable<List<T>> InSetsOf<T>(this IEnumerable<T> source, int max)
    {
        var toReturn = new List<T>(max);
        foreach (var item in source)
        {
            toReturn.Add(item);
            if (toReturn.Count == max)
            {
                yield return toReturn;
                toReturn = new List<T>(max);
            }
        }
        if (toReturn.Any())
        {
            yield return toReturn;
        }
    }

Answers:


I find this little snippet does the job quite nicely.

public static IEnumerable<List<T>> Chunked<T>(this List<T> source, int chunkSize)
{
    var offset = 0;

    while (offset < source.Count)
    {
        yield return source.GetRange(offset, Math.Min(source.Count - offset, chunkSize));
        offset += chunkSize;
    }
}

Answers:


It's an old solution but I had a different approach. I use Skip to move to desired offset and Take to extract desired number of elements:

public static IEnumerable<IEnumerable<T>> Chunk<T>(this IEnumerable<T> source, 
                                                   int chunkSize)
{
    if (chunkSize <= 0)
        throw new ArgumentOutOfRangeException($'{nameof(chunkSize)} should be > 0');

    var nbChunks = (int)Math.Ceiling((double)source.Count()/chunkSize);

    return Enumerable.Range(0, nbChunks)
                     .Select(chunkNb => source.Skip(chunkNb*chunkSize)
                     .Take(chunkSize));
}

Answers:


Just putting in my two cents. If you wanted to 'bucket' the list (visualize left to right), you could do the following:

 public static List<List<T>> Buckets<T>(this List<T> source, int numberOfBuckets)
    {
        List<List<T>> result = new List<List<T>>();
        for (int i = 0; i < numberOfBuckets; i++)
        {
            result.Add(new List<T>());
        }

        int count = 0;
        while (count < source.Count())
        {
            var mod = count % numberOfBuckets;
            result[mod].Add(source[count]);
            count++;
        }
        return result;
    }

Answers:


I took the primary answer and made it to be an IOC container to determine where to split. (For who is really looking to only split on 3 items, in reading this post while searching for an answer?)

This method allows one to split on any type of item as needed.

public static List<List<T>> SplitOn<T>(List<T> main, Func<T, bool> splitOn)
{
    int groupIndex = 0;

    return main.Select( item => new 
                             { 
                               Group = (splitOn.Invoke(item) ? ++groupIndex : groupIndex), 
                               Value = item 
                             })
                .GroupBy( it2 => it2.Group)
                .Select(x => x.Select(v => v.Value).ToList())
                .ToList();
}

So for the OP the code would be

var it = new List<string>()
                       { 'a', 'g', 'e', 'w', 'p', 's', 'q', 'f', 'x', 'y', 'i', 'm', 'c' };

int index = 0; 
var result = SplitOn(it, (itm) => (index++ % 3) == 0 );

Answers:


So performatic as the Sam Saffron's approach.

public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> source, int size)
{
    if (source == null) throw new ArgumentNullException(nameof(source));
    if (size <= 0) throw new ArgumentOutOfRangeException(nameof(size), 'Size must be greater than zero.');

    return BatchImpl(source, size).TakeWhile(x => x.Any());
}

static IEnumerable<IEnumerable<T>> BatchImpl<T>(this IEnumerable<T> source, int size)
{
    var values = new List<T>();
    var group = 1;
    var disposed = false;
    var e = source.GetEnumerator();

    try
    {
        while (!disposed)
        {
            yield return GetBatch(e, values, group, size, () => { e.Dispose(); disposed = true; });
            group++;
        }
    }
    finally
    {
        if (!disposed)
            e.Dispose();
    }
}

static IEnumerable<T> GetBatch<T>(IEnumerator<T> e, List<T> values, int group, int size, Action dispose)
{
    var min = (group - 1) * size + 1;
    var max = group * size;
    var hasValue = false;

    while (values.Count < min && e.MoveNext())
    {
        values.Add(e.Current);
    }

    for (var i = min; i <= max; i++)
    {
        if (i <= values.Count)
        {
            hasValue = true;
        }
        else if (hasValue = e.MoveNext())
        {
            values.Add(e.Current);
        }
        else
        {
            dispose();
        }

        if (hasValue)
            yield return values[i - 1];
        else
            yield break;
    }
}

}


Answers:


Can work with infinite generators:

a.Zip(a.Skip(1), (x, y) => Enumerable.Repeat(x, 1).Concat(Enumerable.Repeat(y, 1)))
 .Zip(a.Skip(2), (xy, z) => xy.Concat(Enumerable.Repeat(z, 1)))
 .Where((x, i) => i % 3 == 0)

Demo code: https://ideone.com/GKmL7M

using System;
using System.Collections.Generic;
using System.Linq;

public class Test
{
  private static void DoIt(IEnumerable<int> a)
  {
    Console.WriteLine(String.Join(' ', a));

    foreach (var x in a.Zip(a.Skip(1), (x, y) => Enumerable.Repeat(x, 1).Concat(Enumerable.Repeat(y, 1))).Zip(a.Skip(2), (xy, z) => xy.Concat(Enumerable.Repeat(z, 1))).Where((x, i) => i % 3 == 0))
      Console.WriteLine(String.Join(' ', x));

    Console.WriteLine();
  }

  public static void Main()
  {
    DoIt(new int[] {1});
    DoIt(new int[] {1, 2});
    DoIt(new int[] {1, 2, 3});
    DoIt(new int[] {1, 2, 3, 4});
    DoIt(new int[] {1, 2, 3, 4, 5});
    DoIt(new int[] {1, 2, 3, 4, 5, 6});
  }
}
1

1 2

1 2 3
1 2 3

1 2 3 4
1 2 3

1 2 3 4 5
1 2 3

1 2 3 4 5 6
1 2 3
4 5 6

But actually I would prefer to write corresponding method without linq.


Answers:


For anyone interested in a packaged/maintained solution, the MoreLINQ library provides the Batch extension method which matches your requested behavior:

IEnumerable<char> source = 'Example string';
IEnumerable<IEnumerable<char>> chunksOfThreeChars = source.Batch(3);

The Batch implementation is similar to Cameron MacFarland's answer, with the addition of an overload for transforming the chunk/batch before returning, and performs quite well.


Answers:


Another way is using Rx Buffer operator

//using System.Linq;
//using System.Reactive.Linq;
//using System.Reactive.Threading.Tasks;

var observableBatches = anAnumerable.ToObservable().Buffer(size);

var batches = aList.ToObservable().Buffer(size).ToList().ToTask().GetAwaiter().GetResult();

Answers:


Check this out! I have a list of elements with a sequence counter and date. For each time the sequence restarts, I want to create a new list.

Ex. list of messages.

 List<dynamic> messages = new List<dynamic>
        {
            new { FcntUp = 101, CommTimestamp = '2019-01-01 00:00:01' },
            new { FcntUp = 102, CommTimestamp = '2019-01-01 00:00:02' },
            new { FcntUp = 103, CommTimestamp = '2019-01-01 00:00:03' },

            //restart of sequence
            new { FcntUp = 1, CommTimestamp = '2019-01-01 00:00:04' },
            new { FcntUp = 2, CommTimestamp = '2019-01-01 00:00:05' },
            new { FcntUp = 3, CommTimestamp = '2019-01-01 00:00:06' },

            //restart of sequence
            new { FcntUp = 1, CommTimestamp = '2019-01-01 00:00:07' },
            new { FcntUp = 2, CommTimestamp = '2019-01-01 00:00:08' },
            new { FcntUp = 3, CommTimestamp = '2019-01-01 00:00:09' }
        };

I want to split the list into separate lists as the counter restarts. Here is the code:

var arraylist = new List<List<dynamic>>();

        List<dynamic> messages = new List<dynamic>
        {
            new { FcntUp = 101, CommTimestamp = '2019-01-01 00:00:01' },
            new { FcntUp = 102, CommTimestamp = '2019-01-01 00:00:02' },
            new { FcntUp = 103, CommTimestamp = '2019-01-01 00:00:03' },

            //restart of sequence
            new { FcntUp = 1, CommTimestamp = '2019-01-01 00:00:04' },
            new { FcntUp = 2, CommTimestamp = '2019-01-01 00:00:05' },
            new { FcntUp = 3, CommTimestamp = '2019-01-01 00:00:06' },

            //restart of sequence
            new { FcntUp = 1, CommTimestamp = '2019-01-01 00:00:07' },
            new { FcntUp = 2, CommTimestamp = '2019-01-01 00:00:08' },
            new { FcntUp = 3, CommTimestamp = '2019-01-01 00:00:09' }
        };

        //group by FcntUp and CommTimestamp
        var query = messages.GroupBy(x => new { x.FcntUp, x.CommTimestamp });

        //declare the current item
        dynamic currentItem = null;

        //declare the list of ranges
        List<dynamic> range = null;

        //loop through the sorted list
        foreach (var item in query)
        {
            //check if start of new range
            if (currentItem == null || item.Key.FcntUp < currentItem.Key.FcntUp)
            {
                //create a new list if the FcntUp starts on a new range
                range = new List<dynamic>();

                //add the list to the parent list
                arraylist.Add(range);
            }

            //add the item to the sublist
            range.Add(item);

            //set the current item
            currentItem = item;
        }

Answers:


public static List<List<T>> GetSplitItemsList<T>(List<T> originalItemsList, short number)
    {
        var listGroup = new List<List<T>>();
        int j = number;
        for (int i = 0; i < originalItemsList.Count; i += number)
        {
            var cList = originalItemsList.Take(j).Skip(i).ToList();
            j += number;
            listGroup.Add(cList);
        }
        return listGroup;
    }

Answers:


If the source collection implements IList < T > (random access by index) we could use the below approach. It only fetches the elements when they are really accessed, so this is particularly useful for lazily-evaluated collections. Similar to unbounded IEnumerable< T >, but for IList< T >.

    public static IEnumerable<IEnumerable<T>> Chunkify<T>(this IList<T> src, int chunkSize)
    {
        if (src == null) throw new ArgumentNullException(nameof(src));
        if (chunkSize < 1) throw new ArgumentOutOfRangeException(nameof(chunkSize), $"must be > 0, got {chunkSize}");

        for(var ci = 0; ci <= src.Count/chunkSize; ci++){
            yield return Window(src, ci*chunkSize, Math.Min((ci+1)*chunkSize, src.Count)-1);
        }
    }

    private static IEnumerable<T> Window<T>(IList<T> src, int startIdx, int endIdx)
    {
        Console.WriteLine($"window {startIdx} - {endIdx}");
        while(startIdx <= endIdx){
            yield return src[startIdx++];
        }
    }

Answers:


There is no way to combine all desirable features like full lazyness, no copying, full generality and safety in one solution. The most fundamental reason is that it cannot be guaranteed that the input is not mutated before the chunks are accessed. Assume that we have a function of the following signature:

public static IEnumerable<IEnumerable<T>> Chunk<T>(this IEnumerable<T> source, int chunkSize)
{
    // Some implementation
}

Then the following way to use it is problematic:

var myList = new List<int>()
{
    1,2,3,4
};
var myChunks = myList.Chunk(2);
myList.RemoveAt(0);
var firstChunk = myChunks.First();    
Console.WriteLine("First chunk:" + String.Join(',', firstChunk));
myList.RemoveAt(0);
var secondChunk = myChunks.Skip(1).First();
Console.WriteLine("Second chunk:" + String.Join(',', secondChunk));
// What outputs do we see for first and second chunk? Probably not what you would expect...

Depending on the specific implementation the code will either fail with a runtime error or produce unintuitive results.

So, at least one of the properties need to be weakened. If you want a bullet-proof lazy solution you need to restrict your input type to an immutable type and even then it is not straightforward to cover up all use cases. If you have control of the usage, you could, however, still opt for the most general solution, as long as you make sure that it is used in a way that works. Otherwise, you might drop the lazyness and accept some amount of copying.

In the end, it all depends on your use case and requirements which solution is the best choice for you.


Answers:


No comments:

Post a Comment